11

source precursor solution, with a metal catalyst or an agent capable of producing said metal catalyst, said high-boiling point organic solvent having a temperature above 200° C., thereby forming a reaction product comprising semiconductor nanocrystals of various 5 shape;

cooling the reaction product, and

- subsequently exposing said cooled reaction product to at least one centrifugal step so as to obtain semiconductor nanocrystals having substantially rod-like shape.
- 2. A method according to claim 1, wherein said metal source is a Group IIIa metal compound.
- 3. A method according to claim 1, wherein said metal source is a Group IIb metal compound.
- **4**. A method according to claim **1**, wherein said metal <sup>15</sup> source is a Group Ib metal compound.
- 5. A method according to claim 2, wherein said Group IIIa metal compound is a Group IIIa metal salt.
- 6. A method according to claim 5, wherein said Group IIIa metal salt is a Group IIIa metal halide.
- 7. A method according to claim 6, wherein said Group IIIa metal halide is InCl<sub>3</sub>.
- 8. A method according to claim 1, wherein said Group Va nonmetal source is in elemental form.
- **9**. A method according to claim **1**, wherein said nonmetal <sup>25</sup> source is a Group Va compound.
- 10. A method according to claim 9, wherein said Group Va compound is a tris(trialkylsilyl) of a Group Va element.
- 11. A method according to claim 10, wherein said Group Va compound is tris(trialkylsilyl)arsenine.
- 12. A method for the formation of Group III–V semiconductor nanocrystals having rod-like shape, comprising
  - (i) reacting, in a high-boiling point organic solvent, a precursor solution comprising at least one Group IIIa metal source and at least one Group Va nonmetal source with a metal catalyst or an agent capable of producing said metal catalyst, said high-boiling point organic solvent having a temperature above 200° C., thereby forming a reaction product comprising Group III–V nanocrystals of various shape;
  - (ii) cooling the reaction product, and
  - (iii) subsequently exposing said cooled reaction product to at least one centrifugal step so as to obtain Group III–V semiconductor nanocrystals having substantially 45 rod-like shape.
- 13. A method according to claim 1, wherein said nonmetal source is a Group VIa compound.
- 14. A method according to claim 1, wherein said nonmetal source is a Group VIIa compound.
- 15. A method according to claim 1, wherein said nonmetal source is a Group VIa element.
- 16. A method according to claim 1, wherein said single-source precursor is selected from the group consisting of a compound comprising both Group Ib and Group VIIa 55 elements, a compound comprising both Group IIb and Group VIa elements, a compound comprising both Group IIIa and Group Va elements, and a compound comprising a Group IVa element.
- 17. A method according to claim 1, wherein said agent 60 capable of producing said metal is a reducing agent.
- 18. A method according to claim 17, wherein said reducing agent is selected from NaBH<sub>4</sub>, KBH<sub>4</sub>, and Na<sub>2</sub>SO<sub>3</sub>.
- 19. A method according to claim 1, wherein said metal catalyst is selected from a noble metal, a group Ib metal, a 65 Group IIb metal, a Group IIIb metal and a transition metal.

12

- 20. A method according to claim 19, wherein said noble metal catalyst is gold.
- 21. A method according to claim 19, wherein said Group IIIa metal is selected from Al, Ga, and In.
- 22. A method according to claim 19, wherein said transition metal is selected from Fe, Zn, and Cd.
- 23. A method according to claim 1, wherein said high boiling point solvent is a strongly coordinating organic solvent.
- 24. A method according to claim 23, wherein said solvent is selected from trioctylphosphine (TOP), trioctylphosphine oxide (TOPO), triphenylphosphine (TPP), triphenylphosphine-oxide (TPPO), hexadecyl amine (HDA) and dodecylamine (DDA).
- 25. A method according to claim 12, wherein step (i) is carried out under a pressure higher than normal pressure.
- 26. A method for the formation of InAs semiconductor nanocrystals having rod-like shape, comprising introducing a precursor solution of an In source and an As source into a hot mixture comprising NaBH<sub>4</sub> and a high boiling point organic solvent, said hot mixture having a temperature above 200° C., thereby forming a reaction product comprising InAs nanocrystals of various shape, and exposing said reaction product to at least one centrifugal step so as to obtain InAs semiconductor nanocrystals having a rod-like shape.
- 27. Group III–V semiconductor nanocrystals having rodlike shape, produced by the method of claim 1.
- 28. Group III-V semiconductor nanocrystals having rodlike shape, produced by the method of claim 12.
- 29. In As semiconductor nanocrystals having rod-like shape, produced by the method of claim 1.
- 30. InAs semiconductor nanocrystals having rod-like shape, produced by the method of claim 26.
  - 31. Inorganic semiconductor nanocrystals having a rodlike shape, produced by the method of claim 1.
  - **32.** An optical device comprising a plurality of nanorods produced by the method of claim **1**.
  - 33. The optical device according to claim 32, operable as a wideband optical amplifier for amplifying data-carrying optical signals, the device comprising a pumping coherent-light source connected to a light transmitting medium for exciting each of said nanorods with light energy required for the amplification of data-carrying optical signals within a specific optical band received in said light transmitting medium, each of said nanorods having dimensions corresponding to said specific optical band and being located at a predetermined point within the light transmitting medium.
  - 34. The device according to claim 32, wherein each of said nanorods is luminescent in the near infra-red spectral range.
  - 35. The device according to claim 32, operable as a laser, comprising an active medium formed by the plurality of said nanorods uniformly dispersed in a laser host medium, a pumping source for exciting each of said nanorods, and an optical cavity providing an optical feedback mechanism for the coherent light produced by said laser active medium.
  - **36**. The device according to claim **32**, wherein said nanorods have identical orientation of their long axes, the device being operable as a source of polarized light.
  - 37. An optical device comprising a plurality of InAs semiconductor nanocrystal nanorods produced by the method of claim 26.

\* \* \* \* \*